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UCTM President’s Message
Rebecca Roche, Granger High School

One of my favorite things to do is travel. Especially during the winter months after Christmas,

it's fun to dream of new places to visit and explore. I love planning where we go, what we see,

and all the yummy food stops. I want to finish the trip feeling like I fully immersed myself and

did not hold back. Travel is also much more fun with travel buddies. If your friends share your

vision for the trip, bring positivity and life to the adventures, and are there to support you if

anything crazy happens on your trip, then they are keepers. No matter how far from the original

itinerary you stray, it's possible to pivot and redeem unexpected situations.

Teaching is so similar to traveling. There are amazing picture worthy moments, seemingly

millions of factors that you can and cannot control, teams that surround us and can make life

way better or wayyy worse, and so many moving parts it can get hard to keep track of it all. Can

math class be a fun destination? We can certainly plan an itinerary that excites and informs our

visitors so they want to keep coming back for more! As a high school math teacher and

daughter of an elementary teacher, I know the work that goes into preparing lessons for all age

levels. Thank you for the intentionality and commitment you have given to this profession and

the time and effort you put into your work.

We joined math education because, on some level, we not only believe that “math rocks” but

that it's important for our students to recognize that, as well. Although each of our journeys in

education are unique, when we surround ourselves with people who are passionate, positive,

and persistent in their pursuit of excellence, it is possible to create spaces that inspire growth in

us and our students. Thank you for embracing the chaos and creating meaningful learning

experiences, even when things go sideways and the unexpected pops up. Thank you for the way

you elevate your surroundings. And thank you for being the type of person that is willing to go

on this journey with us.
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Letter from the Editors
Alees Lee, Ph.D.
Danielle Divis, Ph.D.

As 2024 begins, the editors of Utah Mathematics Teacher were pleased with the response and
support for continuing a winter publication of the journal! This year, we received many
wonderful submissions including articles that highlight mathematical models and strategies for
engaging all learners. 

The UCTM 2024 conference theme is Math Rocks. Being a recent transplant to the beautiful
state of Utah, I took the theme as a sign to visit the infamous Arch this summer and wasn’t
disappointed – nature truly rocks. As I reflect back on the breathtaking views in Moab, I am
reminded that the creation of beautiful things takes time, persistence, and all kinds of weather. I
couldn’t help but see the parallels between the work of teaching and the formation of things in
nature. Most of us became mathematics teachers because of our love for math. We think math
rocks (and it definitely does!), but in doing the work of teaching the love of math can often
become hidden and secondary to all the other elements of our jobs. We can lose sight of what
pulled us into the profession to begin with. I want to remind us that math does, in fact, rock
even as we experience all kinds of weather.

Within this journal, you will find articles that encourage you to see mathematical models in new
ways, offer you strategies for engaging with your students, and to reflect on how to think more
deeply about elements of your job that go beyond the act of teaching. As you read through the
line-up of articles, I want to you to feel inspired to make math rock again.

We hope you enjoy this unique selection of articles and that you use them to find continued joy
in mathematics and mathematics teaching. In addition, please consider submitting your own
articles or serving as a reviewer for further publications.

Note. Any mistakes are the sole responsibility of the editor and will be remedied in the online
journal. Please send corrections to aleeslee@weber.edu or danielledivis21@gmail.com. 
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Teaching Culturally Diverse Students in a

Mathematics Classroom: Ideas Composed

from a Summary of the Current Literature
Christine Walker, Utah Valley University

Abstract

What are the best strategies for teaching mathematics to English Language Learners (ELLs) and

immigrant students? This literature review presents an overview of the current literature

focused on key strategies that support English Language Learners in connecting mathematics to

their world. Having ELL-specific math strategies to implement in math classrooms can help

students develop math proficiency while building their language proficiency, in turn helping

them feel more confident and comfortable in their mathematics classrooms.

Keywords: Mathematics Methods Courses; Preservice teachers; Teacher education;

Inservice Math Teachers; English Language Learners
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As a University Professor of Mathematics, focused on preparing preservice secondary

math teachers, questions have arisen in preservice courses, and in student teaching/intern

observations regarding the teaching of mathematics to those who have a language barrier.

Preservice teachers expressed a strong desire to provide English Language Learners with the

foundation needed to demonstrate mathematical thinking. Thus, the purpose of this literature

review is to present an overview of the current literature focused on the best strategies for

teachers to teach mathematics to English Language Learners.

English Language Learners (ELLs) are students who are not yet able to communicate

fluently in English, which is sometimes referenced as a linguistic barrier. Barriers for ELLs have

been categorized as linguistic and cultural, which surface during instruction and are present in

the curriculum (Encore!!!, n.d.). The challenges to language barriers can lead to potential

misunderstandings, affect personal relationships, impact student work, and can result in a

failure to keep up with coursework.

In 2022, Utah had a total enrollment of 674,650 in the public school system. Of those

674,650 enrolled students, 59,176 were categorized as English Language Learners. This

constituted 8.8% of the population which was a 6.5% increase over the previous years' data and

points to a growth pattern in the public-school population of ELLs (Peterson, 2022). This results

in math teachers, who are not trained ELL teachers, with the sometimes overwhelming task of

providing effective and engaging mathematics instruction to students who they might not even

know are ELLs. A review of the research resulted in key strategies for math teachers to help

ELLs succeed in learning mathematics.
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Strategies

Teaching strategies (instructional strategies) are often thought of as the methods that

teachers use to deliver content to keep students engaged. It ranges from techniques,

procedures, and processes utilized during instruction time. In college and university

departments of education, preservice teachers learn the theory and practice of education in

addition to the foundation of mathematics pedagogy in their content methods courses. In

recent years, colleges of education have added coursework specific to multicultural instruction

and English as a Second Language (ESL) due to the increase in ELLs in public schools. For

example, the National Center for Education Statistics (NCEC) determined that the percentage of

public school students in the United States who were ELLs in the fall of 2020 was 5.0 million

students or a 10.3% increase from the fall of 2010 (U.S. Department of Education, 2023).

However, many teachers who did not have the opportunity to take coursework specific to

multicultural instruction and English as a Second Language (ESL) often feel “…largely untrained

to work with ELL students…” (Durgunoglu & Hughes, 2010).

Due to the significant increase in the number of ELL students, both in Utah and across

the U.S., increasing attention and research have focused on providing teachers with tools and

strategies to help ELLs succeed in mainstream classrooms. As specified in the research, when it

comes to learning mathematics, students who have a language barrier, face a more challenging

problem of learning the language and the language of mathematics simultaneously.

As an example of the challenges ELLs face learning the language and the language of

mathematics simultaneously, Kristina Robertson writes about a famous math problem that is
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often imprinted on “gag” math t-shirts for sale. It involves a problem where a student is to “find

x.”

(Fashion, 2023)

She writes, “The student obviously knew the meaning of the word "find" because he/she

"found" it on the page and circled it. The student even put a note on the page to help the

teacher in locating the lost "x". The student understood the meaning of "find" in one context,

but not in the appropriate mathematical context” (Robertson, n.d.).

As noted in Robertson’s example, students, in particular ELL students, often lack

familiarity with mathematics vocabulary and context. The good news is that there are key

strategies to help ELLs overcome these obstacles and have been shown by research and

experience to have a positive impact on the mathematics achievement of ELL students. The

current literature indicates key strategies focused on the areas of mathematics vocabulary,

changes to instructional routines, and teacher talk/partner talk.

Mathematics Vocabulary

Students often come with some basic mathematical vocabulary such as add, subtract, and

counting numbers for example one, two, three, etc. Focusing on the words and phrases, and in

best cases accompanying the vocabulary words with illustrations, can help students build
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understanding by making connections between the words and the mathematics. ELLs also need

opportunities to use the new vocabulary in a variety of ways.

Vocabulary Banks. Vocabulary banks are one strategy for implementing new vocabulary

in the classroom. It is especially important when word problems are posed to help ELLs

understand the context. Vocabulary banks can be employed in worksheets, posting a chart of

foundational mathematics vocabulary words and phrases in the room (Willig, Bresser,

Melanese, Sphar, & Felux, 2014), or “playing vocabulary games, reading math readers”

(Blankman, 2021). Another version of a vocabulary bank is the strategy called the K.I.M

Strategy, which stands for Keyword, Important information, and Memory clue. It has been

defined as a “low prep, high yield” vocabulary-building strategy and involves creating a

three-column chart, composed of the keyword, a definition of the word or information that

matches the keyword, and a memory clue such as a picture or visual representation. As an

example:

(Vibas, 2023)
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Sentence Frames. Creating and posting lesson-specific or vocabulary-specific sentence

frames can check students' comprehension of mathematical vocabulary and help ELLs begin to

form complete mathematical sentences (Robertson, n.d.; Wilburne, Marinak, & Strickland,

2011). It allows ELLs to practice speaking in a low-risk setting and supports the introduction of

new vocabulary in a context to practice the vocabulary. Sentence frames can be categorized in

a variety of ways, such as describing, comparing, categorizing, sequencing, predicting, and

drawing conclusions to name just a few (Blankman, 2021). An example would be “The answer is

__________ degrees because it is a __________ triangle”.

Reinforce Vocabulary through Verbal and Nonverbal Responses. Nonverbal responses

such as thumbs up or down can be used to check understanding (Willig, Bresser, Melanese,

Sphar, & Felux, 2014), as well as verbal responses, such as having all students verbally repeat a

new word out loud. This ensures ELLs can hear the correct pronunciation of the word. Aligning

the new word with a visual chart and illustration helps to connect the grammar with an

image-building connection between the new word and a visual. These are often referred to as

Math Word Walls (McKay, n.d.; Vibas, 2023).

On the National Council of Teachers of Mathematics (NTCM) website, under Classroom

Resources is a link for ‘Activities with Rigor and Coherence’, referred to as ARCs. One activity

called Triangle Congruence, Lesson 1 of 4, titled “Congruent Halves”, has students create two

congruent halves from one polygon by using transformations. In the introduction to the lesson,

the author writes “For English language learners, it may be useful to print and have on a “Word

Wall” the images you show of a rotation, reflection, and translation” (Ray-Riek, Duarte, & Baker,

n.d.).
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Instructional Routines

The publication Principles to Action articulates a view of instructional routines that are known to

support the development of mathematical proficiency (NCTM, 2014). The instructional routines

focus on eight mathematics teaching practices that “provide a framework for strengthening the

teaching and learning of mathematics…which represent a core set of high-leverage practices

and essential teaching skills necessary to promote deep learning of mathematics” (p.10). They

also represent an effective typical day in a mathematics classroom, such as establishing a goal

(in some districts, this is called an “I can” statement); implementing a task/posing a question;

facilitating discourse/using and connecting representations and eliciting student thinking;

building procedural fluency from conceptual understanding/task; and supporting struggle.

Kendall Hunt Publishing Company partnered with Illustrative Mathematics to implement

specific instructional routines “known as Mathematical Language Routines (MLR)…developed

by the Stanford University UL/SCALE team…(which are) supports for students with emerging

English language proficiency” (Illustrative Mathematics, n.d.). The eight MLRs are instructional

strategies for teachers to implement in classrooms to meet the needs of all students with a

focus on three of the eight that are most effective for ELLs.

Three Reads. The “three reads” strategy involves having a student read a math

scenario/problem three times, each time having a different goal in mind. The first read is to

have the student understand the context of the problem and not focus on the question at the

end, often having the teacher read the problem orally. This can even include a whole class

discussion about what the problem might be about. The second read is designed to understand

mathematics and is often completed with a partner or whole class. The second read is to
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identify quantities and how they relate to the problem which involves writing student ideas on a

whiteboard. The third read of the problem is where the context of the problem is read one last

time and the focus is on the actual question posed. A discussion usually takes place regarding

how students might go about solving the problem and can occur in partner pairs or as a whole

class (Herbert, n.d.; Illustrative Mathematics, n.d.).

Stronger and Clearer Each Time. The Stronger and Clearer Each Time strategy involves a

scenario where students begin with a prompt or problem and write what they know about the

problem. Students are encouraged to draw a diagram and use words or phrases. Once this

stage is complete, students are paired with a partner to share their own thinking and get

feedback. Then the roles are reversed, and they do the same for their partner. In both

circumstances, students write down things they heard from their partner, incorporate the new

information from their partner, and then revise what they had initially written. This can

continue with 2-3 different partners, with the final draft of the problem clearer and more

precise (Illustrative Mathematics, n.d.). The routine supports ELLs in using and improving their

English and mathematics language in a low-risk environment before sharing with the whole

class.

Information Gap Cards. Information Gap Cards is an activity that involves two students

or partner pairs. The first student has a data card, and the second student has a problem card.

The cards can be task cards, math puzzles, or content cards. Each card has information about

the problem, but not enough information to solve the problem without working together. As an

example:
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(Estrella, n.d.)

As with the Stronger and Clearer Each Time strategy, the routine encourages ELLs to use

mathematical language to communicate with their partner improving their English and

mathematics language simultaneously. It also reinforces mathematical vocabulary,

pronunciation, and meaning (Illustrative Mathematics, n.d.; Estrella, n.d.).

Manipulatives & Technology. Manipulatives are a tool that can help students progress

from a concrete circumstance in mathematics to abstract reasoning in solving problems (Willig,

Bresser, Melanese, Sphar, & Felux, 2014). They are often engaging and highly active, where

students can create situations in a low-risk environment. Manipulatives can help students

understand the context and visualize the problem to help build their vocabulary and
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comprehend what they are being asked to solve (Robertson, n.d.; Vibas, 2023). It is especially

beneficial to help students who understand mathematics but have learned a different algorithm

or model. Richard Blankman demonstrates this idea by showing what division looks like to a

Venezuelan, U.S., and French student:

(Blankman, 2021)

Teacher Talk/Partner Talk

Teachers can help ELLs think and process mathematical ideas by utilizing strategies such as clear

articulation, speaking slowly, reading word problems several times, and placing more emphasis

on new vocabulary words or questions by reading and writing them on the board. Words are

not the only method of communication. Teacher talk can be conveyed through gestures, facial

expressions, and visual aids (Encore!!!, n.d.).

Designing Leveled Questions. Depending on the ELLs level of understanding, designing

open-ended leveled questions can begin a conversation or confirm a student's mathematical

understanding. Leveled questions could begin with a pointing question such as, “Show me the

circle”, progressing to a yes/no question “Is one fraction larger than the other fraction”, and

finally to a short-answer question such as, “Is a square a polygon?” (Willig, Bresser, Melanese,

Sphar, & Felux, 2014)

Prompts. Prompts are another version of leveled questions with an open-ended aspect

to solicit a more in-depth response. It can be used as a low-risk way to further the
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mathematical conversation. A prompt in a small group setting is most useful to help ELLs

articulate an idea such as “You said a square is a polygon because…” or “You figured out one

fraction was larger than the other fraction by…” (Willig, Bresser, Melanese, Sphar, & Felux,

2014).

Grouping Students/Working together. Background and context knowledge in

mathematics plays a critical role in understanding how to start mathematics problems. Brenda

Krick-Morales writes, “Word problems in mathematics often pose a challenge because they

require that students read and comprehend the text of the problem, identify the question that

needs to be answered, and finally create and solve a numerical equation. Many ELLs may have

difficulty reading and understanding the written content in a word problem. If a student is

learning English as a second language, he might not yet know key terminology needed to solve

the equation” (Krick-Morales, n.d.; Robertson, n.d.).

In The Utah Middle School Math Project textbook for Grade 7, the ‘4.0 Anchor Problem:

Tasting Lemonade’ (Chapter 2), asks students to determine the most “lemony” recipe (A

University of Utah Partnership Project for 7th and 8th Grade Math, 2023). The question uses

the word cup, which can mean two things. A cup can mean something to drink from, however,

in the context of the problem a cup is used as a measurement (Picchi Cwynar & Hewett, n.d.;

Robertson, n.d.). Grouping students or pairing with a partner who is composed of a mix of first

and second-English language learners, vocabulary words with double meanings can be

discussed (i.e. “rational”), and their meanings made clear, enabling ELLs the ability to

understand and move forward in understanding and solving the problem. As an example, in a
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document published by the Board of Cooperative Educational Services (BOES), a list of

polysemous words was created to demonstrate what words were confusing for ELLs.

(BOCES, n.d.)

Conclusions

Whether you’re a teacher of ELLs or not, implementing key strategies in math

classrooms can help students develop math proficiency while building language proficiency, in

turn helping all students feel more confident and comfortable in their mathematics classrooms.

Implementing ELL-specific math strategies can help ELLs connect math to their world. It is

highly recommended that employing some of these key strategies in classroom instruction can

be transformative for ELLs, as well as any mathematics student. What works for one teacher,

may not work for others, and can look different for different contexts and content. And not

every strategy will work for every teacher, so why not “try some on”?
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Leveraging Picture Books to Engage

Elementary Students in Mathematical Problem

Solving
Nicole Gearing, Andria Disney, and Andrew Goodman, Utah Valley
University

Today’s grade level meeting left me with a challenge. National Kindness Week was quickly

approaching, and the school counselor tasked each grade level to focus as much of our

instruction on social emotional learning tasks - specifically using themes in picture books by

Susan Verde. Fourth grade was assigned I Am One by Susan Verde. We read the book at the

meeting, and we all loved it! It was a thoughtful and inspiring story about how every movement

and change starts with a single, intentional act. One purposeful act is often all it takes to start

something beautiful in your school, your community, your world. Our ELA instruction could

easily be focused on poetry with students studying the verses in the book and then writing their

own. Our social studies instruction could focus on how one intentional act can positively impact

the state’s physical environment. Even PE was on board by practicing mindfulness and

meditation through yoga. It was my responsibility to fit these National Kindness Week themes

into our math instruction somehow. One is a number, of course…but beyond that, I had no clue.

Like the teacher in this vignette, using picture books in language arts and social studies

comes naturally to many elementary teachers, but thinking about how to connect a picture book

to mathematics may be more challenging. This article explores the reasons why using picture

books in mathematics instruction is helpful for student learning. It also offers concrete steps for

how to implement this instructional practice into your teaching, and shares some ideas and
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resources to support you in leveraging picture books to engage students in mathematical problem

solving.

Background and Research

Literature, especially picture books, creates meaningful contexts to engage students in

mathematical problem solving (Shatzer, 2008). The images in picture books help students make

visual connections to mathematics concepts. They can also pique students’ curiosity, leading

them to articulate mathematical notices and wonders that can then be explored and/or solved.

Additionally, stories create a familiar context that helps students access mathematics and see

math within their own lives.

When we think about using picture books as a basis for solving math problems, we often

think we must use books that feature explicit, math-related content. But, consider how you

might use any book as inspiration for problem solving. Hintz and Smith (2013) offer a helpful

framework for classifying the types of books you can use as the basis for a math lesson. First,

there are text-dependent books, where you must understand a math concept in order to

understand the story, like Two of Everything, The Lion’s Share, or The Greedy Triangle, which

require knowledge of doubling, fractions, and geometric shapes, respectively, to understand the

story. Next, there are idea-enhancing books, where math is not the central focus of the story but

they offer natural places to deepen student understanding of a math concept. Examples of

idea-enhancing books include Extra Yarn, Six Dinner Sid, and Fry Bread, which could engage

students in wondering about mathematical concepts such as measurement, multiplication, and

doubling whole numbers and fractions. Last, there are illustration-exploring books, which have

images that provide inspiration for exploring mathematical ideas, like I Spy Shapes in Art, Duck!

Rabbit!, and The Little Blue Truck, which shows geometric shapes, data, and counting. By
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keeping this framework in mind, teachers can leverage the texts they are already using as part of

their reading and language arts instruction to be a springboard for math problem solving.

The National Council of Teachers of Mathematics (NCTM) has outlined effective

practices for teachers of mathematics at any level (2014). When teachers use picture books to

engage students in mathematical problem solving, they are using several of these effective math

teaching practices. First and foremost, they are “implementing tasks that promote reasoning and

problem solving” (NCTM, 2014, p.10). Importantly, literature creates those critical multiple

entry points and supports students to engage in mathematical reasoning within familiar contexts.

Teachers also “facilitate meaningful mathematical discourse” when using picture books in their

lessons (p.10). As Shatzer (2008) noted, the contexts of picture books support students to

communicate mathematically. That communication can and should take the form of both oral and

written discourse as students make sense of the problem, engage in solving it, share their

reasoning, and consider the reasoning of others. As these examples highlight, using picture books

supports effective mathematics teaching.

Classroom Implementation

While we explored the framework for classifying texts (Hintz & Smith) above, here are

some practical examples of ways to implement the use of picture books in a math lesson. You

will notice that these examples come from the categories of idea-enhancing and

illustration-exploring and are picture books commonly found in classrooms and/or school

libraries that can promote math problem-solving. One strategy is to create a context for a

problem-based lesson by using the picture book as the lesson’s launch. Picture books are full of

experiences that are familiar to students, including situations where their notices and wonders

could be explored using math. For example, when reading The Little Blue Truck by Alice
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Schrtle, it is hard not to wonder how many feet helped the little blue truck out of the mud!

Another way to use a picture book in a lesson is to read the book in its entirety and then ask

children to solve a specific problem they may be wondering about, like how many meals does

Sid eat in a week in the book, Six Dinner Sid by Inga Moore. Teachers can also pause while

reading a book to solve a problem and then finish the book seeing how the characters in the book

solved the problem. For example, teachers could begin reading Centipede's 100 Shoes and pause

to figure out how many extra shoes the centipede bought when he learned he did not have 100

feet. A fourth strategy is to let students do the problem-posing. Extra Yarn, by Mac Barnett, is a

great example of a picture book that leads children to ask many mathematical questions. In the

story, the main character, Annabelle, finds a magical box of yarn. She begins knitting sweaters

and never seems to run out of yarn. When reading the book, children might wonder how much

yarn Annabelle uses to make sweaters for her class or how far the box traveled to the archduke

and back to Annabelle. With a little more information and a few assumptions, they can answer

those questions.

Getting Started

So how do you get started? There are many collections of picture book math tasks

available. Elementary math curriculum often includes suggestions for picture books embedded in

lessons. Using tasks based on picture books that already exist, like the tasks in the Picture Book

Library at Utah Valley University’s Creative Learning Studio website, is the easiest way to get

started. Most of the tasks are based on common picture books that you can find at your school or

public library. Try to make sure you find a copy of the book rather than playing a video off of

YouTube, as it is much more engaging for children to hear you read. Once you find the book,

read it multiple times:

Utah Mathematics Teacher Volume 16 25

https://www.uvu.edu/education/creative-learning/math-picture-book-library.php
https://www.uvu.edu/education/creative-learning/math-picture-book-library.php


1. Read it to enjoy the story, then read it from your students’ perspective.

2. Note where your students might get excited about the story and make some mathematical

notices.

3. Read it to ensure that the problem you plan to pose is tightly aligned with the context of

the book, otherwise your lesson will feel disjointed or forced.

Anticipating Student Thinking

When using the picture book as part of a problem-based lesson, consider following Smith

and Stein’s (2011) Five Practices for Orchestrating Discourse. Once you’ve identified the book

and problem that align with your lesson’s mathematical goals, it’s time to anticipate student

thinking. To start, solve the task you plan to pose and anticipate the strategies your students

might use to solve the problem. If you are engaging in a notice and wonder lesson, you’ll want to

anticipate the types of problems your students might pose and what information they’ll need to

solve their problem.

Once you’ve anticipated the strategies your students might use, you are ready to prepare

assessing and advancing questions for each anticipated strategy. Assessing questions help the

teacher understand a student’s thinking. Advancing questions help extend or deepen the students'

understanding of the concept (Smith & Sherin, 2019). Since you are basing your problem from a

picture book, you should purposefully connect the questions to the mathematics at hand and the

story elements in the picture book to help students connect the math they are doing with the

familiar context you’ve created. A monitoring chart (see Figure 1) is a useful tool for recording

the strategies you have anticipated and the questions you plan to ask (Gearing & Disney, 2023).
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Figure 1

Basic Monitoring Chart

Teaching the Lesson

Once you’ve anticipated strategies and planned purposeful questions, it’s time to launch

your lesson and engage your students in your picture book lesson. Before you begin to read, set

the purpose for the read aloud. You might do this by giving students a particular listening job if

you plan to pose a specific problem or you might ask them to write down everything they notice

or wonder that they could solve using math as they listen. As you read, engage the students in

both the familiar contexts of the story and the math they might notice. Use character voices, be

silly, and get children excited about the story and math.

As students work on solving the problem, use your monitoring chart to record student

names in the corresponding row based on the strategy they are using. Then select students to

share based on a logical sequence of the strategies they are utilizing. The most concrete strategy

should be shared first so that everyone can engage in the discussion part of this lesson. It’s

important to make sure you connect learning back to the context created by the picture book

throughout the discussion (Shatzer, 2008). Once you’ve completed the task, you can extend

learning by posing similar problems with the same familiar context. You could also ask students

what they still wonder, allowing one question to lead to more worthwhile problems to solve.
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Create Your Own Tasks

Once you feel comfortable implementing tasks that have already been created, start

making your own! Any book can be turned into a math task, you just have to create a bank of

ideas for yourself based on the picture books you frequently use in your classroom. Here are

some steps to get started.

1. Start with a rich picture book that has an engaging story and purposeful

illustrations. You don’t have to look far because the books you are already using

for reading and language arts instruction are the perfect place to start.

2. As you read, write down everything you notice and wonder that could be explored

using math. Keep all of the books and all of the notices and wonders in an

accessible document or notebook.

3. Make sure the tasks you pose are worthwhile and tightly aligned to the text or

illustrations in the story.

4. Refer back to your list when you decide you would like to integrate a book you

are already using in another content area or morning meetings into math.

No matter whether you use tasks that are already created or you develop your own, using

picture books as a launch into mathematical problem solving is an effective way to engage and

support your students in mathematics learning. Picture books provide students with meaningful

contexts in which they can make connections to their own lives as well as the mathematics

concepts they are exploring (Hintz & Smith, 2013; Shatzer, 2008). Picture books also create

opportunities to explore rich mathematics tasks that require reasoning and problem solving and

require students to communicate mathematically (NCTM, 2014; Shatzer, 2008). Finally, picture

books are an integral part of the elementary classroom experience, so leverage the picture books
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you are already using as part of your reading and language arts instruction for your mathematics

instruction, too!

Using I Am One to Inspire Mathematical Problem Solving

I have always been grateful to work with great people, especially today. One of my fellow math

teachers passed along an article written about connecting picture books with math instruction,

and I was able to access some math tasks from the UVU Creative Learning Studio’s Math Picture

Book Library, which gave me the breakthrough I needed for National Kindness Week. Based

upon their recommendations, I was able to connect the message of I Am One by Susan Verde with

a grade-level math standard about multiplication in a meaningful way.

Task (Standard 4.NBT.5): Imagine how many things we could do if we worked together!

If everyone in the class completed 5 (or 15, 25, 40, 55, etc.) acts of kindness, how many

acts of kindness could we complete? How do you know? Use pictures or numbers to

show your thinking. Then use words to explain how you know.

Anticipating Strategies: Students might use a base-ten model, repeated addition, a

known fact, or partial products (see Figure 2).

Figure 2

Monitoring Chart for I Am One

Monitoring Chart

Problem to Solve: Imagine how many things we could do if we worked together! If everyone in

the class completed 5 acts of kindness, how many acts of kindness could we complete? How do

you know? Use pictures or numbers to show your thinking. Then use words to explain how you

know.
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Strategy/Level/Solutions Questions to Ask Students

Repeated addition
34 + 34 + 34 + 34 + 34 =
170

● How did you know how many times
you needed to add 34?

● How could you rewrite this equation
to use multiplication?

Area Model

30 4

5 150 20

150 + 20 = 170

● Why did you decide to break the
numbers apart this way?

● How do the numbers connect to the
problem?

● How could you use an equation to
represent the area model?

Partial Products
34
X 5
20

+150
170

● Where did the partial products of 20
and 150 come from?

● Why can you break apart the
numbers that way?

● Is there a different way you could
break apart the numbers?

Cannot Get Started ● What is happening in the problem
you are trying to solve?

● What are the characters in the
problem doing?

● What do the characters in the
problem need to find out?

Adapted from Smith, M. & Stein, M. K. (2018). 5 Practices for orchestrating productive mathematics
discussion. National Council of Teachers of Mathematics.

Launch: Read I Am One by Susan Verde aloud, then ask students what they notice or

wonder that could be answered using math. Then pose the task: At the end of the story,

the author writes, “I can make one drop in the water…to start ripples…that become

swells, then waves, traveling over oceans…across borders and boundaries…landing on

distant shores to start a chain reaction, inspire a movement, make a change. One is all it

takes to start something beautiful.” Imagine how many things we could do if we worked
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together! If everyone in the class completed 5 acts of kindness, how many acts of

kindness could we complete? How do you know? Use pictures or numbers to show your

thinking. Then use words to explain how you know.

Explore: Students work independently or in pairs. Provide access to manipulatives as

needed. As students work, use the monitoring chart to identify strategies students are

using to help facilitate the upcoming discussion. Purposefully select students to share

how they solved the problem based on the lesson’s goal.

Summarize: Selected students share how they found the product - explaining their

thinking. Create an anchor chart and facilitate discussion that helps students connect

strategies used to reach the lesson’s goal.

Two weeks later. National Kindness Week was a smash! Students responded positively to the

grade-level theme of the week, especially being able to connect the content and meaning of the

book in different ways. Within the math lesson, students were excited to use larger numbers of

acts of kindness - a few even challenged themselves to find out how many individual acts of

kindness each student in the class would need to do to reach a million acts of kindness. Answer:

In our class of 34 students plus me, each of us would need to complete 28,571 acts of kindness!

We dabbled with numbers larger than we usually consider in this particular standard, but when

students are into it and determined to figure it out, what can you do?
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A New Twist on an Old Friend: A Partitive

Model for Dividing Fractions
Joseph Kozlowski, Utah State University
Sukey Ross, Utah State University

New Ways to Model and Represent Mathematical Thinking

The age of modeling, understanding, doing, and manipulating mathematics is here.

Diagrams, pictures, manipulatives, and tools, are all different types of mathematical models

(Lesh et al., 1987). Students in schools and classrooms are now, more than ever, actively

constructing mathematical understanding by engaging in lessons that promote mathematical

practices such as modeling, making sense of problems, or looking for and making use of

structures (CCSSM, 2010), and thereby, conceptual understanding of mathematics is beginning

to be more common in many mathematics classrooms around the nation. Classrooms focused

on conceptual-based mathematics teaching do not target following steps, memorization, or

rapid calculations. Instead, they emphasize rich experiences with mathematics that encourage

problem solving and construction of number relationships. Through experiences that relate

mathematics to real life, relationships, visuals, and concrete ideas, students develop a number

sense that allows them to synthesize and utilize mathematics. As this type of conceptual-based

pedagogy burgeons, educators look for new and innovative models that help students relate

abstract concepts to concrete ideas. This article proposes a conceptual model to help students

construct understanding of dividing fractions.
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Dividing Fractions: A Challenging Endeavor

If you are a mathematics teacher in the 3-12 grades, you have encountered students’

struggle to truly understand division of fractions. Many students, as well as pre-service

teachers, fail to gain a strong conceptual understanding of division of fractions (Lamberg &

Wiest, 2015). This common challenge in the mathematics education community substantiates

the need for a variety of mathematical models that enhance conceptual understanding of these

skills, not only for students but for teachers. As teachers ourselves, we found this struggle in our

everyday teaching experiences. Students divided fractions by executing procedures but when it

came to justifying their mathematical reasoning, we saw sullen faces and twittering fingers. This

disparity between computation and understanding is what prompted us to investigate

alternative models to represent division of fractions.

Measurement vs. Partitive Models of Division.

Lamon (2017) describes two distinct and crucial structures of division; measurement and

partitive. Our students had used both structures when exploring division with whole numbers.

Understanding these two structures of division with whole numbers is one key that will allow

students to transfer mathematical knowledge as they develop understanding of dividing

fractions. The measurement structure of division is the idea of taking equal groups out of a

whole and determining how many groups were removed. This verbiage of taking groups out of a

whole is the current language that is being implemented in the Common Core Mathematics

Companion by Gojak and Miles (2016). These mathematical terms allowed our students to

visualize the transfer between a physical group and an abstract thought. An example of the

measurement structure of division is as follows. If you had 32 cookies and wanted to give
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exactly 8 cookies to as many people as possible, how many people could you give exactly 8

cookies to? You have a whole amount of 32 cookies, you take out groups of 8 cookies, and find

that you can take out exactly 3 groups of 8 cookies. Many of the current fraction models used in

classrooms focus on the measurement structure of division. Some of the common models for

helping students conceptualize the division of fractions using the measurement structure are

area models, length models, and set models.

The second division structure is the partitive model (Van De Walle et al., 2010). This

structure of division depicts taking a whole amount and equally sharing it into groups, with an

end goal of determining the value of one whole group. Consider the same cookie problem

mentioned above. Instead of taking out groups of 8 cookies and giving it to as many friends as

possible (measurement model), the partitive model would indicate you have 8 friends, and you

have to evenly share your cookies with all of them. Partitively, you would be equally sharing the

cookies between 8 people and determining how many cookies one person gets (the value of

one whole group). Determining the value of each (whole) group is the critical element when we

consider our conceptual partitive structure to dividing fractions.

Both structures of division are crucial to student understanding. There are numerous

measurement models designed to build students' conceptual understanding. However, we

struggled to find a model that directed student thinking of dividing fractions towards a partitive

structure. Peer exploration and dialogue of effective lessons led us to a visual model that

directed student thinking towards a conceptual partitive structure of dividing fractions.
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Our Conceptual, Partitive Model for Dividing Fractions

To show you our conceptual partitive model for dividing fractions, we will start by using

it to divide whole numbers and move to

dividing fractions. First, let us consider the

partitive structure to divide whole numbers.

Take a simple expression such as 24÷3. In the

partitive mindset, we would ask ourselves “If I

evenly share 24 into 3 groups, what is the value

of one whole group?” (Figure 1). In this case you will see that 1 group will have a value of 8 after

all have been passed out.

Now, simply, using the same definition of partitive division, let us take this model one

step further to help us divide a whole number by a

fraction. Consider the problem, 5÷ . I would always
1
2

encourage the students to repeat the meaning of partitive

division by saying “If I share 5

into of a group, what is the
1
2

value of one whole group?”

(Figure 2) When our

students passed out all 5 into group they initially got stuck.
1
2

There was not one whole group in which to find the value, they

only had group. By definition of this partitive structure of
1
2
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division however, they needed to find the value of one whole group. At this point, we

introduced a key question to guide student thinking. “How much more of the group do you

need to complete the whole group?” After investigation, the students discovered that if they

added another group, they were able to complete the whole group. As they reflected on the
1
2

whole group, they noticed it was made up of two ½ groups, each having a value of 5 (Figure 3).

Students concluded the value of the one whole group being 10, so 5÷ = 10
1
2

Finally, students are introduced to a division problem that poses a fraction being divided

by a fraction. Let us consider the problem . The critical
3
8 ÷ 1

3

component is going all the way back to our fundamental

understanding of the partitive structure of division. Again,

students repeated the meaning of the partitive structure by

saying “If I share into of a group, what is the value of one
3
8

1
3

whole group?” Using this conceptual partitive model allows an

individual to see exactly where the values are being shared. In

Figure 4, the student has no choice but to share all into the of a group. The students
3
8

1
3

noticed that again there was not a whole group. The key question was posed to the students

“How much more of the group do you need to complete one whole group?” Soon, students

decided to supplement the existing group with 2 more groups. Now, considering that the
1
3

1
3

initial group had a value of , proportionality requires that each subsequent group would
1
3

3
8

1
3
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have a value of . By adding 2 more groups, each with a value of , students created one
3
8

1
3

3
8

whole group and found the value as such, + + = or 3 groups of .
3
8

3
8

3
8

9
8

3
8

We used a sample problem with a group of 5th grade students in order to document

student thinking as well give us insight into their understanding of this conceptual model. The

sample problem read “Mrs. Ross wanted to put up fence around her whole round pasture. She

had of a mile of fencing. Unfortunately, the of a mile of fence only completed of the
3
8

3
8  1

3  

perimeter. How much fence does Mrs. Ross need to complete the distance around the whole

pasture? As one student was working through the problem, she drew a circle and segmented

the perimeter off into three equal portions and said “So you need two more, because if it’s a

third, there are three parts. This is one part, this is one , and this is another .” Each time she
3
8

3
8

indicated the portion, she used her finger to point to the corresponding of the pasture.
3
8  1

3

When the student was asked how she knew there would need to be 3 of the , she responded
3
8

“Because I just think of thirds as always being three pieces so since she had of a mile and that
3
8

was , I knew there had to be another and another because ummm, because otherwise
1
3

3
8

3
8

they wouldn’t be thirds.” This student demonstrates this type of partitive thinking because she

is working to complete the whole group by reconstructing portions of the unfinished group and

each portion must have the same value.

Unit Fractions vs. More Challenging Fractions

You may have noticed that the fraction problems above all have a unit fraction divisor,

which make it seem simple. You also may be wondering if this model still works for more
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challenging problems such as ? The simple answer is a resounding yes! This article will
6
8 ÷ 2

7

not spend too much time explicating every problem type, that is for you to play with, but when

using this conceptual partitive model for a problem like students can employ their
6
8 ÷ 2

7

proportional reasoning to solve them. Students would start by sharing all the into group.
6
8

2
7

They would try to complete the entire group (one whole group), and thereby would need to
7
7

add on group. Considering group had a value of , then proportionality would require
5
7  2

7
6
8

group have a value of . Therefore, students would see that the additional would have a
1
7  3

8
5
7  

value of 5 x , with a total value of one whole group as: the starting + the additional (5 x )
3
8

6
8

3
8

= . If you are just thinking, 7 x , you are right on! Think how interesting of a way that is to
21
8

3
8

solve the problem ! It does not exactly look a lot like the old method, now does
6
8 ÷ 2

7  6
8 × 7

2

it!

Instructional Suggestion – Paper Plate Partitioning

We have found one way to introduce this conceptual partitive model concretely, which is

by using paper plates. We have all used the classic paper plate technique for equal sharing

division problems, so why not extend them to equal sharing division of fraction problems! As

you can already imagine, the only resources you need to get started are pencils, paper plates,

scissors, and fraction bars/bits of paper to write on. Simply start with a progression of problems

similar to those outlined above. Start with division of whole numbers and have students solidify

the understanding that the answer to this kind of conception of division is the value of one

whole group – or the value of one whole plate. Soon, you will have students sharing amounts
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into ¼ of a paper plate, and then using proportionality to try and figure out what the value of

one whole paper plate is. For example, if you posed the problem the students would
2
3 ÷ 1

4

pass out all the to the only of a plate (Figure 5). Then, using proportionality and guided by
2
3  1

4

the question “what is the value of one whole plate?” they complete the whole plate by adding

three more plates, each with a value of (Figure 6). Thus, the value of one whole plate is
1
4

2
3

8
3

Relevance

This partitive structure represents the traditional algorithm more closely than any model

we have yet encountered. When teachers instruct to, “copy, dot, flip” or, “turn it upside down

and multiply,” you will find that the procedure closely follows the mathematical operation and

reasoning that is demonstrated by this partitive model. Consider the aforementioned problem

÷ . When you arrive with one whole group and you are ready to determine the value, you
3
8

1
3

are ultimately taking , 3 times. If you were to flip upside down (take the reciprocal), and
3
8

1
3
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multiply it by , you have arrived at the same calculation that the conceptual partitive model
3
8

delineated, 3.
3
8 ×

This conceptual partitive structure for dividing fractions has many implications on

instruction in the 3-12 classroom. It is not uncommon for students to struggle with conceptual

understanding of reasoning with rational numbers (Smith III, 1995). In fact, it is one of the more

challenging operations and concepts in K-12 education (Siegler & Lortie-Forgues, 2017). This

model may prove valuable as the mathematics education community continues to pursue new

ways to link pictorial understanding to abstract concepts. Furthermore, we see power in this

model when we look at students’ work and listen to their justifications. Students are developing

links between this model of division and conceptual understanding of fractional division. These

links from pictorial representations to abstract, and from prior knowledge to new content, are

links that are essential for learning.

So, for all you mathematics teachers who are intrigued, and saying “does that really

work with all fractions?” or “how have I not thought of using the partitive model in this way

before?” Go ahead, give it a try, draw a picture, use different whole numbers and fractions,

explore and have fun. See what your students think about this model and please email us to let

us know how it went and what you think!
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An Alternative Chip Model for Operations on

Integers
Zach Hurdle, Utah Valley University
Wiktor Mogilski, Utah Valley University

Abstract: The use of positive and negative colored counters has been used to represent the four

basic operations as a visualization tool in elementary education. However, the previous models

are inefficient and inconsistent with various algebraic definitions and also leave little room for

modeling division. We seek to remedy this situation.

Keywords: operations on integers, integer chip model, K-6 mathematics education

Operations with integers are a fundamental piece of K-6 mathematics education. Teaching the

four main operations can already be a fairly tricky concept, which only gets exacerbated when

using the set of integers. Recall that many teachers use manipulatives to lead elementary

students from concrete to the abstract understanding of integers (Stein & Bovalino, 2001; Cope,

2015). One model commonly used is the integer chip model, which textbooks and other

teaching resources endorse (Long, DeTemple, & Millman, 2015; Fierro, 2013). We seek an

efficient method to use colored counters to represent all four basic operations consistently

while maintaining alignment with their fundamental definitions.

Initially, we noticed many texts and math manipulatives are limited in their ability to

accurately portray anything beyond addition and subtraction. Some representations are

sufficient regarding multiplication, but many authors tack on division as an afterthought, relying

on simple knowledge recollection of integer multiplication fact families to construct a seemingly
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unrelated and weak division model. There have been limited attempts at creating a solid

division chip model, but they are scarce and have not gained traction (Lamb, Bishop, Philipp,

Whitacre, Schappelle, 2018; Battista, 1983). We seek to update and humbly upgrade this model

for consistency, aligning with the foundation of algebraic definitions rather than elementary

education tropes. In short, we not only believe our design is simpler, but it is also more

consistent with the building blocks of modern-day algebra.

To review, the chip model consists of colored counters, simple white and black circles,

representing +1 and -1, respectively. In Figure 1, we show how to represent 0, and then 3 in two

different ways, for those readers not familiar with the concept of integer chips. Essentially,

these numerous ways of displaying the same value can be attributed to the additive identity. We

want to use prior definitions of the existence of negatives: that is, . We will𝑚 +  (− 𝑚) =  0

define zero pairs as the pairing of one white chip and one black chip to represent 0.

Figure 1

Three chip representations for 0, 3, and 3, respectively

These objects give students something tangible to manipulate as they attempt to grasp

the idea of negative numbers before performing operations on them. A combination of details

such as where the chips are placed, the chip color, and the movement of the chips, are usually

discussed.
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Addition and Subtraction

We will review the common process of adding and subtracting under this model. For

addition, we push two separate groups of chips together (the addends), and for subtraction we

remove the appropriate amount of chips (the subtrahend) from the starting amount (the

minuend). In Figure 2, we represent the chip model of 7 + (-2). Notice that each pair of white

and black chips “zeroes out” in the result, leaving a sum of 5.

Figure 2

Representation of 7 + (-2)

In Figure 3, we represent the chip model method for 7 – (-2). Notice that if we were to

represent 7 with all white chips, there would be no black chips available in order to remove two

of them. Because of this, we use the existence of negatives and include two pairs of 0 so that

we have enough blacks to remove. Now, we have enough to physically take away two black

chips. We can now see the difference is 9. The diagram is similar for subtraction compared to

the first addition problem in Figure 2 because these are inverse operations.
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Figure 3

Representation of 7 – (-2)

We do not take issue with these similar forms of representing these two basic

operations the way we have seen in many teaching resources, as the act of combining two

groups is fundamental to addition while removing some objects from a set of objects aligns with

subtraction. However, as we will show in the next section, we think that the common

representation of multiplication (and the general lack of for division) is not a natural way of

thinking in the same way.

Original Multiplication

In order to compare our proposed method of representing multiplication and division

with chips, we should first review the typical textbook methods. In Figure 4, notice the direction

arrows shown for these models. An arrow going into the box represents the positive motion of

inclusion, while an arrow going out of the box represents the negative motion of removal. While

we appreciate this consistency, it heavily relies on the elementary education notion that

multiplication is only representative of “skip counting” addition.
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Figure 4

Chip representations for , , , and , respectively3∙2 3∙(− 2) (− 3)∙2 (− 3)∙(− 2)

For example, in the fourth image in Figure 4 we remove three sets of chips and there are

two black chips per set, thus showing the operation . In all of the above examples,(− 3)∙(− 2)

we are required to start with 0 inside the box, and then put chips inside or take chips away.

There are many problems with this. First, while it works for the subtraction model to include

enough extra chips for there to be enough to remove and carry out the operation, in

multiplication this can require so much extra work in setting up the problem before even

carrying out the procedure, requiring an excess amount of chips and confusing the student.

Second, the multiplicative identity is 1, not 0, and so building a multiplication problem

from a 0 starting point does not make mathematical sense if you are thinking of multiplication

as a standalone operation.

Third, this model requires a separate case drawing for all four sign configurations; quite

a bit for young learners to remember. Fourth, if a user tries to invert the process to create a

division representation, using 0 as the initial condition presents plenty of issues. This is probably

why many division models look entirely different in most texts, relying on prior knowledge of

fact families to build a multi-colored array, such as in Figure 5. This will be different than ours in

many ways, particularly given this model does not continue with the inclusion/removal motions
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that were a large aspect of the first three operations. In doing so, this model then appears

unrelated, and instead relies on memorization of multiplication facts. While the Figure 5 model

rehashes the multiplication model, ours instead will require a process that discovers the

resulting quotient, and naturally incurs the white/black color of the result.

Fifth, in the prior subtraction model, the minuend (first value in the expression)

represents how many chips to deal with initially, whereas in the multiplication model, the

multiplier (first value in the expression) represents the motion of removing or including

certain-sized groups of chips; we find this inconsistent as well.

Figure 5

Typical integer division model

Proposed Multiplication Model

We introduce a new multiplication model that evokes less confusion about arrow

direction, entirely avoids the need to supply enough chips to “start” from zero, and considers

fewer cases. Our model will be invertible and also provide a natural chip model for division. We

revisit Figure 4, but more efficiently. First, we define what we call a flip. By the geometric

definition of a reflection, this is a transformation that preserves distances. Algebraically, a flip

represents the multiplication/division of a value by -1, which becomes its additive

inverse—flipping chips tracks this process. Using a traditional number line, such as in Figure 6,
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we can see that a reflection, in this case across the origin, simply interchanges positive and

negative rays that make up the number line. This can be extended to a group of chips, which is

represented by a single integer, because this is a natural pairing between a positive integer and

its negative counterpart. In the past, we have typically described this concept as “sets of” or

“groups of” in multiplication algorithms.

Figure 6

Illustration of reflections across a number line, and existence of negatives

Keeping this in mind, we present our multiplication and division models for integers in Figure 7.

Contrasting this with Figure 4, there are many differences. We will elaborate upon the process

shortly.

Figure 7

Top left: , top right: , bottom left: , bottom right:3∙(− 2) (− 3)∙2 (− 6)÷(− 2) (− 6)÷2

We will now elaborate upon the procedure for our multiplication model first. Suppose

that we wish to demonstrate the product of a negative and a positive, where A and B are

integers ( . We begin by arranging A chips horizontally (recall that a white chip𝐴, 𝐵∈𝑍)
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represents +1 and a black chip represents -1). Adjacent to the horizontal chips, we arrange B

chips vertically. We now build an array (Figure 8). For every B chip, we arrange a set of A chips

horizontally, extrapolating the same color.

Figure 8

Representations for and , respectively𝐴∙(− 𝐵) (− 𝐴)∙𝐵

Please note that the arrows do not have any directional significance other than pointing to the

final product (and later, final quotient). We then count the resulting B rows of A chips. This will

result in a number C, the product, which represents , up until the prospective sign. Lastly,𝐴∙𝐵

we determine this sign. If the B chips are white, then . If the B chips are black, then we𝐴∙𝐵 = 𝐶

physically flip the entire array of chips and . Conceptual knowledge here relies on𝐴∙𝐵 =− 𝐶

students already understanding the definition of a flip and how it is illustrated in Figure 6. This

procedure uses less chips and decision making than the classical chips multiplication model.

Furthermore, it naturally showcases multiplication by zero (Figure 9) and algebraic properties of

multiplication such as commutativity (Figure 10). It makes sense to have a distinguished model

for multiplication as it is an entirely separate operation on its own, independent of addition. The

classic model tries to tie the multiplication model directly to the addition model through skip

counting.
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Figure 9

Chip representation for 3∙0

Figure 10

Showcasing commutativity of the multiplication model

A salient feature of this proposed multiplication model is the fact that it is invertible. Thus, it

provides a more intuitive model for division that is otherwise absent from the literature.

Suppose we wish to demonstrate the operation (Figure 11). We begin by arranging B chips𝐴÷𝐵

vertically (again, using the appropriate color depending on the sign of B). Then, we partition A

chips into groups of equal size to the left of B chips so that each B chip corresponds to a single

group. Let C denote the number of chips in such a group. If B chips are white, then . If𝐴÷𝐵 = 𝐶

B chips are black, then we must flip the chips in the group and the result is .𝐴÷𝐵 =− 𝐶
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Figure 11

Representations for and(− 6)÷(− 3) (− 6)÷3

A notable feature of the division model is demonstrating the abstract idea that division by zero

is undefined. This is essential, and often not explained in elementary classrooms either with

manipulatives or actual values; instead just accepted as fact. If , it does not make sense𝐵 = 0

to attempt partitioning A chips above into 0 groups (see Figure 12). However, dividing 0 by

anything does work because partitioning 0 chips into as many groups as necessary is doable,

even if tedious.

Figure 12

Inability to partition A chips to 0 groups

Supporting our New Model

Notice that in our model, the main focus is to flip or not to flip. We believe the process

of flipping is more definition-based and intuitive than the binary decision (arrows in, arrows

out) in the traditional multiplication model. The traditional model also requires the extra step of

deciding on the inclusion of more chips before even proceeding with the problem in the first
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place. We can imagine the user would find it frustrating to first set up the entire problem before

actually carrying out the procedures. Recall, in the previous model the user also has to consider

four separate cases, such as , , , and (see Figure 4). In our newer− 𝐴∙𝐵 𝐴∙ − 𝐵 𝐴∙𝐵 − 𝐴∙ − 𝐵

proposed model, the decisions are much fewer and straightforward (see Figure 7).

Additionally, our division can be done similarly, inverting the process. Previous models

rely on various combinations of the products of the units, and then extrapolating into

appropriate arrays that are part of the overall multiplication fact family (again, refer to Figure 5).

To us, this was not a true division model that made sense as a standalone. To be mathematically

sound according to ring theory, addition and multiplication should have their own unique

models that can have the process inverted to create natural subtraction and division models. To

be clear, we are essentially proposing two separate models, one for adding/subtracting integers,

and one for multiplying/dividing integers. However, these models are much more related.

Our model, in a sense, relies on arrays the entire way, regardless of operation. Because

of this, Figure 10 shows commutativity is very clear. We extend this idea and provide a

demonstration for associativity as follows in Figure 13. We start by showing , and then2∙(− 3)

multiply by (-1); we see that [ . Next, we shift the parenthesis, showing2∙(− 3)]∙(− 1) = 6

associativity. So, is represented by , and then multiplying by 2.2∙[ − 3( ) • − 1( )] (− 3)∙(− 1)

Compare how algorithmically our process works efficiently in multiple steps rather than pausing

and reorganizing to include and remove the appropriate chips needed to proceed, which would

unfortunately be necessary to succeed with the traditional model. We think this is one of the

biggest advantages in our model, and becomes more streamlined as a result.
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Figure 13

Showcasing associativity of the multiplication model, but output of -6

Summary

Manipulatives are a necessary tool for bringing students from the concrete to the

abstract in learning the fundamentals of mathematics at a young age. It is imperative to have

models that are both simple and effective. we provide an update to previous model attempts,

revamping the process regarding efficiency, consistency, and accuracy. We outlined many

strengths to our model compared to any predecessors. While we had no complaints about the

addition and subtraction integer chip models, we found many faults with multiplication, which

we outlined above. The division model is practically non-existent in the literature so we also

extended our multiplication model to fill this void. While there are still two separate overall

models, they are more compatible and connect with each other. We have several examples and

illustrations for both students and teachers to follow, and invite teachers to try these models

out with their students, and report back any findings after further exploration, to determine to

what extent this model can help students truly conceptualize the relationships between

integers.
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Discourse About Student Discourse
Trish French, USBE
Lindsey Henderson, USBE

Picture the following: a math class where all of the students are silently working through

pages of calculations and equations. A room devoid of discourse and debate. A room where

students independently struggle to grasp mathematical concepts.

Now what if, instead, we create classrooms where mathematical language and

interactions are predominant throughout the room? This discourse or “mathing elixir” becomes

the catalyst for more engaging and successful mathematical learning moving students away

from a learning desert to a richly forested place of progress.

According to the National Council of Teachers of Mathematics, the facilitation of

meaningful mathematical discourse is one of eight evidence-based teaching practices: “Effective

teaching of mathematics facilitates discourse among students to bring shared understanding of

mathematical ideas by analyzing and comparing student approaches and arguments” ( 2014). A

good teacher recognizes and uses discourse to lead students on a journey of learning, asking

questions and engaging students in dialogue that sparks creativity and encourages students to

think independently. “The teacher’s skilful questioning…helps students to identify thinking

processes, to see the connections between ideas and to build new understanding as they work

their way to a solution that makes sense to them” (Asking Effective Questions, 2011).

I like to think of discourse as a “twofer.” “When a teacher engages students in

meaningful mathematical discourse, they are also engaging in several other effective teaching

practices–posing purposeful questions, eliciting and using evidence of student thinking, using

and connecting mathematical representations, and supporting productive struggle” (Smith,
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Stein, 2011, p. 1). These are some of the reasons Utah’s secondary mathematics community

has embraced student discourse as a high priority, referencing its power many times in Utah’s

Core Standards for Mathematics, Utah’s Secondary Mathematics Vision as well as Utah’s PK-12

Mathematics Framework.

So what does the discourse “mathing elixir” look like in Utah mathematics classrooms? A

good teacher will create a learning environment in which student discourse is a normal and

expected element of learning. Discourse should be encouraged and respected, and students

should be given opportunities to share their ideas and reason with peers as well as the teacher.

If a student has a great idea or creative solution, they should be given the chance to explain it

(even if the answer is incorrect) and the class should be encouraged to respectfully comment

and to make connections to what was shared. Utah’s Core Mathematics Standards, in every

grade from kindergarten through secondary mathematics III, explicitly calls out the power of

students engaging in “constructing viable arguments and critiquing the reasoning of others”

(K-SM3.MP.4).

Utah’s PK-12 Mathematics Vision and Utah’s PK-12 Mathematics Framework both

emphasize the importance of discourse and provide resources to help educators implement

discourse routines in classrooms. Three powerful USBE sponsored book studies, Making

Number Talks Matter, Building Thinking Classrooms, and 5 Practices for Orchestrating

Productive Mathematics Discourse, highlight routines that can help educators begin to support

discourse in their mathematics classrooms.

Utah Mathematics Teacher Volume 16 58

https://www.schools.utah.gov/curr/mathematics/core?mid=4514&tid=1
https://www.schools.utah.gov/curr/mathematics/core?mid=4514&tid=1
https://www.schools.utah.gov/file/df207139-18a7-4bc0-ac8c-423a15c8a0eb
https://www.schools.utah.gov/file/1d074950-00fc-4654-b53d-1dac8aaf11fb
https://www.schools.utah.gov/file/1d074950-00fc-4654-b53d-1dac8aaf11fb
https://www.schools.utah.gov/curr/mathematics/core?mid=4514&tid=1
https://www.schools.utah.gov/file/df207139-18a7-4bc0-ac8c-423a15c8a0eb
https://www.schools.utah.gov/file/1d074950-00fc-4654-b53d-1dac8aaf11fb
https://forms.gle/T9TJMaGsbcSgfmfY7


Discourse can also be used as a powerful way to assess, differentiate, and offer just in time

supports in a student's mathematical journey, helping a skilled educator to identify areas of

understanding or challenge and with little to no papers for a teacher to grade. It is also a great

way for students to learn from their peers and build relationships and a wonderful way for

teachers to give immediate and meaningful feedback to student’s mathematical ways of

thinking and knowing. According to Eric Jensen “newly processed information should be given

immediate feedback (every ten minutes) for correction to occur before the information gets too

fixed” (2005).

So next time you’re in a Utah mathematics classroom, remember to look for, encourage,

and use the discourse mathing elixir. It is one of the key ingredients to a successful mathematics

learning experience where students can tap into the joy of mathematics as an active participant

in the learning experience. In the article Never Say Anything a Kid Can Say, Steven Reinhart

states: “...by merely telling them [students] answers, doing things for them, or showing them

shortcuts, I relieve students of their responsibilities and cheat them of the opportunity to make

sense of the mathematics they are learning, I must ask good questions, allow students to

struggle…” (2000). We challenge each of you this school year to allow each of your students

the opportunity to feel the joy of mathematical connections and discovery through rich student

discourse!
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How a Good Grade can Affect our Math

Students
Kyriakos Petakos, Advanced School of Tourism Education of Rhodes

Abstract: The forthcoming article is rather an occasion to provoke a discussion among

Utah math educators about how willing they really are to assign grades not based solely

on ability.

Introduction

Teaching math is our job and ways to improve it pose an everlasting target. Among our

duties lies undoubtedly the grading part. How many times have we encountered students who

are opposed to and afraid of what they perceive a bad (low) grade to be.

By adopting what I call a persistence-based grading approach, I came to understand how

pivotal in the whole teaching and learning process a good grade proves to be. When I first

adopted this approach I was skeptical enough, but I realized assigning good grades became a

catalyst for attaining a new level of communication with the students.

When generating the idea for persistence-based grading, I remained loyal to the

sociocultural theory of Vygotsky (Vygotsky, 1978). The composite word sociocultural explains by

itself the gist of the theory. Any learning outcome is a result of a social process, produced in and

for the society. We, math teachers, have a miniature form of this society before us: the

classroom.
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A fundamental component of this sociocultural environment is language. As Vygotsky

himself articulates it “language, the very means by which reflection and elaboration of

experience takes place, is a highly personal and at the same time a profoundly social human

process” (Vygotsky, 1978, p.126). Language is how we communicate ideas between teachers

and students, and the meaning of the language comes from our interactions within the society

we live (e.g., parents, friends, family, etc.).

Mathematics is considered to be a hard subject, and perceived as loathsome for a great

many students. As a result, a plethora of students have low or no expectations for achieving

some kind of success in math. I then wondered whether a good grade might be enough to fuel

their interest and bolster some kind of enthusiasm for mathematics. Perhaps a good grade

would be like offering joy to disheartened and disappointed people, by providing them with

evidence that their efforts in a math course can bear fruit in the form of a good grade. Instead

of prioritizing whether they considered all restrictions in an equation or the numerical mistakes

they committed trying to solve a problem. For example, when missing some restrictions,

assigning to them a satisfactory portion of the whole grade. Making a step upwards from a low

level should and can be rewarded in some way, and in my opinion, this materializes with a

higher grade than the usual norms for grading would have allowed.

Does this form of teachers’ demeanor pose an occasion of injustice for talented and

gifted students? I need to mention here that the lenient grading policy applies to all students.

Gifted students will continue to score high and have their own set of exercises to be occupied

with. Simply, as the society outside the classroom has space for everyone, regardless of her

aptitudes and talents, by the same token classroom society should have room for students who
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are ill-disposed towards math. A feasible way to achieve that is what I called before a

persistent-based grading approach, wherein the good grade assigned to them carries weight.

My experience has demonstrated that straight A students come to accept this kind of teachers’

behavior and at the same time demonstrate a solidarity towards the students, who need that

kind of reward. Solidarity is a fundamental concept for the society in general, much less in a

classroom’s realm.

I will be really thrilled if my above sort of commentary can precipitate a dialogue among

Utah math educators. Especially if it raises awareness on what I tried to introduce as the

persistence-based grading approach, based on an effective sociocultural tool, the grade, the

reward in our school environment.
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